Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 89
1.
Drug Alcohol Depend ; 236: 109501, 2022 07 01.
Article En | MEDLINE | ID: mdl-35644071

INTRODUCTION: Benzodiazepines (BZD) are a class of anxiolytics with varying uses, which primarily act on the GABAA receptor resulting in hyperpolarisation. BZDs are often a difficult drug class to cease once neuroadaptation has occurred; recommendations usually involve gradual dose reductions at variable rates. A growing body of evidence has suggested that low-dose flumazenil, a GABAA receptor antagonist, may be a useful agent to allow for rapid detoxification. AIM: To collect pilot data on the safety and efficacy of low-dose subcutaneous flumazenil to reduce BZD use, withdrawal symptoms, and craving in participants taking above and below the therapeutic maximum diazepam equivalent of 30 mg to inform on sample size for future trials. METHOD: In a randomised double-blinded crossover study design, participants received low-dose flumazenil first (4 mg/24 h for approximately eight days) or placebo first. Groups were divided into those taking < 30 mg diazepam equivalent and ≥ 30 mg diazepam equivalent at baseline. Main outcome measures were percentage reduction in daily diazepam use, withdrawal symptoms, and craving scores from baseline, difference in diazepam use across the placebo first group, and flumazenil related adverse events. RESULTS: Twenty-eight participants were recruited and randomised to flumazenil first (n = 14) and placebo first (n = 14). In participants taking ≥ 30 mg diazepam equivalent at baseline (n = 15), flumazenil significantly reduced diazepam use by 30.5% (p = 0.024) compared to placebo. CONCLUSION: Low-dose flumazenil may aid in BZD detoxification in participants taking daily diazepam equivalent doses greater than or equal to the therapeutic maximum (≥30 mg) by reducing the need for diazepam.


Benzodiazepines , Flumazenil , Substance Withdrawal Syndrome , Benzodiazepines/administration & dosage , Benzodiazepines/adverse effects , Cross-Over Studies , Diazepam/administration & dosage , Diazepam/adverse effects , Double-Blind Method , Flumazenil/administration & dosage , Flumazenil/therapeutic use , GABA-A Receptor Antagonists/administration & dosage , GABA-A Receptor Antagonists/therapeutic use , Humans , Inactivation, Metabolic/drug effects , Pilot Projects , Receptors, GABA-A/metabolism , Substance Withdrawal Syndrome/drug therapy , Substance Withdrawal Syndrome/metabolism
2.
J Neurophysiol ; 127(1): 267-278, 2022 01 01.
Article En | MEDLINE | ID: mdl-34879205

Brainstem respiratory neuronal network significantly contributes to cough motor pattern generation. Neuronal populations in the pre-Bötzinger complex (PreBötC) represent a substantial component for respiratory rhythmogenesis. We studied the role of PreBötC neuronal excitation and inhibition on mechanically induced tracheobronchial cough in 15 spontaneously breathing, pentobarbital anesthetized adult cats (35 mg/kg, iv initially). Neuronal excitation by unilateral microinjection of glutamate analog d,l-homocysteic acid resulted in mild reduction of cough abdominal electromyogram (EMG) amplitudes and very limited temporal changes of cough compared with effects on breathing (very high respiratory rate, high amplitude inspiratory bursts with a short inspiratory phase, and tonic inspiratory motor component). Mean arterial blood pressure temporarily decreased. Blocking glutamate-related neuronal excitation by bilateral microinjections of nonspecific glutamate receptor antagonist kynurenic acid reduced cough inspiratory and expiratory EMG amplitude and shortened most cough temporal characteristics similarly to breathing temporal characteristics. Respiratory rate decreased and blood pressure temporarily increased. Limiting active neuronal inhibition by unilateral and bilateral microinjections of GABAA receptor antagonist gabazine resulted in lower cough number, reduced expiratory cough efforts, and prolongation of cough temporal features and breathing phases (with lower respiratory rate). The PreBötC is important for cough motor pattern generation. Excitatory glutamatergic neurotransmission in the PreBötC is involved in control of cough intensity and patterning. GABAA receptor-related inhibition in the PreBötC strongly affects breathing and coughing phase durations in the same manner, as well as cough expiratory efforts. In conclusion, differences in effects on cough and breathing are consistent with separate control of these behaviors.NEW & NOTEWORTHY This study is the first to explore the role of the inspiratory rhythm and pattern generator, the pre-Bötzinger complex (PreBötC), in cough motor pattern formation. In the PreBötC, excitatory glutamatergic neurotransmission affects cough intensity and patterning but not rhythm, and GABAA receptor-related inhibition affects coughing and breathing phase durations similarly to each other. Our data show that the PreBötC is important for cough motor pattern generation, but cough rhythmogenesis appears to be controlled elsewhere.


Central Pattern Generators , Cough , Excitatory Amino Acid Antagonists/pharmacology , GABA-A Receptor Antagonists/pharmacology , Glutamic Acid/pharmacology , Inhalation , Medulla Oblongata , Reflex , Respiratory Rate , Abdominal Muscles/drug effects , Abdominal Muscles/physiopathology , Animals , Behavior, Animal/drug effects , Behavior, Animal/physiology , Cats , Central Pattern Generators/drug effects , Central Pattern Generators/metabolism , Central Pattern Generators/physiopathology , Cough/drug therapy , Cough/metabolism , Cough/physiopathology , Electromyography , Excitatory Amino Acid Antagonists/administration & dosage , Female , GABA-A Receptor Antagonists/administration & dosage , Glutamic Acid/administration & dosage , Glutamic Acid/analysis , Homocysteine/analogs & derivatives , Homocysteine/pharmacology , Inhalation/drug effects , Inhalation/physiology , Kynurenic Acid/pharmacology , Male , Medulla Oblongata/drug effects , Medulla Oblongata/metabolism , Medulla Oblongata/physiopathology , Pyridazines/pharmacology , Reflex/drug effects , Reflex/physiology , Respiratory Rate/drug effects , Respiratory Rate/physiology
3.
Mol Brain ; 14(1): 139, 2021 09 10.
Article En | MEDLINE | ID: mdl-34507588

Chronic pain easily leads to concomitant mood disorders, and the excitability of anterior cingulate cortex (ACC) pyramidal neurons (PNs) is involved in chronic pain-related anxiety. However, the mechanism by which PNs regulate pain-related anxiety is still unknown. The GABAergic system plays an important role in modulating neuronal activity. In this paper, we aimed to study how the GABAergic system participates in regulating the excitability of ACC PNs, consequently affecting chronic inflammatory pain-related anxiety. A rat model of CFA-induced chronic inflammatory pain displayed anxiety-like behaviors, increased the excitability of ACC PNs, and reduced inhibitory presynaptic transmission; however, the number of GAD65/67 was not altered. Interestingly, intra-ACC injection of the GABAAR agonist muscimol relieved anxiety-like behaviors but had no effect on chronic inflammatory pain. Intra-ACC injection of the GABAAR antagonist picrotoxin induced anxiety-like behaviors but had no effect on pain in normal rats. Notably, chemogenetic activation of GABAergic neurons in the ACC alleviated chronic inflammatory pain and pain-induced anxiety-like behaviors, enhanced inhibitory presynaptic transmission, and reduced the excitability of ACC PNs. Chemogenetic inhibition of GABAergic neurons in the ACC led to pain-induced anxiety-like behaviors, reduced inhibitory presynaptic transmission, and enhanced the excitability of ACC PNs but had no effect on pain in normal rats. We demonstrate that the GABAergic system mediates a reduction in inhibitory presynaptic transmission in the ACC, which leads to enhanced excitability of pyramidal neurons in the ACC and is associated with chronic inflammatory pain-related anxiety.


Anxiety/physiopathology , Chronic Pain/physiopathology , GABAergic Neurons/physiology , Gyrus Cinguli/physiopathology , Inflammation/psychology , Pyramidal Cells/physiology , Animals , Anti-Anxiety Agents/administration & dosage , Anti-Anxiety Agents/pharmacology , Anti-Anxiety Agents/therapeutic use , Anxiety/drug therapy , Anxiety/etiology , Central Nervous System Sensitization/drug effects , Chronic Pain/psychology , Clozapine/therapeutic use , Freund's Adjuvant/toxicity , GABA-A Receptor Agonists/administration & dosage , GABA-A Receptor Agonists/pharmacology , GABA-A Receptor Agonists/therapeutic use , GABA-A Receptor Antagonists/administration & dosage , GABA-A Receptor Antagonists/pharmacology , GABA-A Receptor Antagonists/toxicity , GABAergic Neurons/enzymology , Genetic Vectors/pharmacology , Inflammation/chemically induced , Inflammation/physiopathology , Injections , Interneurons/drug effects , Male , Muscimol/administration & dosage , Muscimol/pharmacology , Muscimol/therapeutic use , Open Field Test , Pain Threshold/drug effects , Patch-Clamp Techniques , Picrotoxin/toxicity , Presynaptic Terminals/drug effects , Presynaptic Terminals/physiology , Pyramidal Cells/enzymology , Rats , Rats, Sprague-Dawley
4.
BMC Complement Med Ther ; 21(1): 184, 2021 Jul 01.
Article En | MEDLINE | ID: mdl-34210323

BACKGROUND: In order to find a new natural resource for pain-relief, the analgesic effects of Ilex dipyrena crude extract, fractions, and subfractions were evaluated in in-vivo mouse models with possible mechanism of action. METHODS: Analgesic effects of crude extract (100 and 200 mg/kg body weight), fractions and subfractions (75 mg/kg body weight) were screened using heat-induced (tail-immersion and hot plate test) and chemical-induced (formalin and acetic acid) nociception models in mice. The samples were also tested for the elucidation of a possible mechanism through opioidergic and GABAergic systems. RESULTS: The administration of crude extract, fractions and subfractions produced analgesic responses in acetic acid, formalin, tail immersion, and hot plate model for pain similar to those obtained with the standard. Naloxone antagonized the antinociceptive effects of the tested samples, whereas bicuculline showed partial inhibition. Considering the analgesic response, crude extract, fractions, and subfractions demonstrated promising inhibitory activity against all test models for pain, which was further supported by the possible involvement of opioidergic and GABAergic systems. CONCLUSION: The results suggest that this plant may be useful in the development of new analgesic drugs. Further research with regard to the isolation of bioactive compounds is required to verify these findings.


Analgesics/pharmacology , Ilex , Pain/drug therapy , Plant Extracts/pharmacology , Animals , Bicuculline/administration & dosage , GABA-A Receptor Antagonists/administration & dosage , Mice, Inbred BALB C , Models, Animal , Naloxone/administration & dosage , Narcotic Antagonists/administration & dosage , Toxicity Tests, Acute
5.
J Hepatol ; 75(1): 98-107, 2021 07.
Article En | MEDLINE | ID: mdl-33894327

BACKGROUND & AIMS: Golexanolone is a novel small molecule GABA-A receptor-modulating steroid antagonist under development for the treatment of cognitive and vigilance disorders caused by allosteric over-activation of GABA-A receptors by neurosteroids. It restored spatial learning and motor coordination in animal models of hepatic encephalopathy (HE) and mitigated the effects of intravenous allopregnanolone in healthy adults in a dose-dependent fashion. Herein, we report data on the safety, pharmacokinetics (PK) and efficacy of golexanolone in adult patients with cirrhosis. METHODS: Following single/multiple ascending dose studies, adults with Child-Pugh A/B cirrhosis and abnormal continuous reaction time (CRT) on screening were randomized to 3 weeks' dosing with golexanolone (10, 40 or 80 mg BID) or placebo. CRT, psychometric hepatic encephalopathy score (PHES), animal naming test (ANT), Epworth sleepiness scale (ESS) and electroencephalogram (mean dominant frequency [MDF]; delta+theta/alpha+beta ratio [DT/AB]) were obtained at baseline, 10, and 21 days. RESULTS: Golexanolone exhibited satisfactory safety and PK. Baseline characteristics were similar between the 12 and 33 patients randomized to placebo or golexanolone, respectively. By prespecified analyses, golexanolone was associated with directionally favourable changes vs. placebo in ESS (p = 0.047), MDF (p = 0.142) and DT/AB (p = 0.021). All patients also showed directionally favourable changes in CRT, PHES and ANT, but with no statistical difference between golexanolone and placebo. Post hoc analyses taking into account the variability and improvement in CRT, PHES and ANT observed between screening and baseline suggested an efficacy signal by cognitive measures as well. CONCLUSION: Golexanolone was well tolerated and associated with improvement in cognitive performance. These results implicate GABA-A receptor-modulating neurosteroids in the pathogenesis of HE and support the therapeutic potential of golexanolone. LAY SUMMARY: Many patients with cirrhosis experience subtle but disabling cognitive problems, including sleepiness and poor attention span, that impair their ability to be gainfully employed or carry out activities of daily living. This pilot study tested the hypothesis that these problems with cognition, for which there is no approved treatment, might be improved by an experimental drug, golexanolone, designed to normalize the function of receptors which inhibit brain function. The results of this study suggest that golexanolone is well tolerated and may improve cognition, as reflected by measures of sleepiness, attention span and brain wave activity, paving the way for future larger studies of this promising experimental drug. CLINICAL TRIAL REGISTRATION NUMBER: EudraCT 2016-003651-30.


Cognition/drug effects , GABA-A Receptor Antagonists , Hepatic Encephalopathy , Phenanthrenes , Activities of Daily Living , Arousal/drug effects , Attention/drug effects , Double-Blind Method , Drugs, Investigational , Electroencephalography/methods , Female , GABA-A Receptor Antagonists/administration & dosage , GABA-A Receptor Antagonists/adverse effects , GABA-A Receptor Antagonists/pharmacokinetics , Hepatic Encephalopathy/diagnosis , Hepatic Encephalopathy/drug therapy , Hepatic Encephalopathy/etiology , Hepatic Encephalopathy/metabolism , Humans , Liver Cirrhosis/complications , Male , Middle Aged , Neuropsychological Tests , Neurosteroids/administration & dosage , Neurosteroids/adverse effects , Neurosteroids/pharmacokinetics , Phenanthrenes/administration & dosage , Phenanthrenes/adverse effects , Phenanthrenes/pharmacokinetics , Pilot Projects , Sleepiness/drug effects , Treatment Outcome
6.
Brain Res ; 1762: 147440, 2021 07 01.
Article En | MEDLINE | ID: mdl-33745922

Dysfunctional modulation of brain circuits that regulate the emotional response to potentially threatening stimuli is associated to an inappropriate representation of the emotional salience. Reduced top-down control by cortical areas is assumed to underlie several behavioral abnormalities including aggression and anxiety related behaviors. Previous studies have identified disrupted GABA signaling in the anterior cingulate cortex (ACC) as a possible mechanism underlying the top-down regulation of aggression and anxiety. In this study, we investigate a role for GABA-A receptor in the ACC in the regulation of aggression and anxiety related behaviors in socially isolated mice. We evaluated the effects of site directed injections of the GABA-A receptor agonist, muscimol or the GABA-A receptor antagonist, bicuculline into the ACC on these behaviors. Results showed that hyper-aggressive behavior, the anxiety and avoidance behavior in socially isolated mice were increased by muscimol microinfusion into ACC, while the sociability was not affected. In contrast, hyper-aggressive behavior in socially isolated mice was inhibited following bicuculline microinfusion without affecting anxiety. Furthermore, microinfusion of bicuculline into ACC decreased avoidance intensity and significantly reinforced social behavior, suggesting that GABA-A receptor inhibition in ACC specifically regulated aggression and sociability. Together, our results confirm a role for GABA-A receptor signaling in the ACC in the regulation of aggressive, social and anxiety related behaviors in socially isolated mice.


Aggression/physiology , Anxiety/metabolism , Gyrus Cinguli/metabolism , Receptors, GABA-A/metabolism , Signal Transduction/physiology , Social Isolation , Aggression/drug effects , Aggression/psychology , Animals , Anxiety/psychology , GABA-A Receptor Agonists/administration & dosage , GABA-A Receptor Antagonists/administration & dosage , Gyrus Cinguli/drug effects , Locomotion/drug effects , Locomotion/physiology , Male , Mice , Microinjections , Signal Transduction/drug effects , Social Isolation/psychology
7.
J Surg Res ; 259: 431-441, 2021 03.
Article En | MEDLINE | ID: mdl-33069391

BACKGROUND: Ivermectin (IVM) was first used as an antiparasitic agent; however, the role of this drug evolved into a broad spectrum. Many mechanisms have been proposed, including interaction with the GABAergic system. Considering the presence of GABA receptor in the skin tissue and its role in ischemia-reperfusion I/R injury, we aimed to evaluate the effect of IVM through GABA receptors on random-pattern skin flap survival. METHODS: Sixty Wistar male rats were used. Multiple doses of IVM (0.01, 0.05, 0.2, and 0.5 mg/kg) were injected intraperitoneally before the surgery. Baclofen (selective GABAB agonist) and bicuculline (selective GABAA antagonist) were administered in combination with IVM to assess the role of the GABAergic system. Histopathological evaluations, immunohistochemical staining, quantitative assessment of IL-1ß and TNFα, and the expression of GABAA α1 subunit and GABAB R1 receptors were evaluated in the skin tissue. RESULTS: IVM 0.05 mg/kg could significantly increase flap survival compared with the control group (P < 0.001). Subeffective dose of baclofen (0.1 mg/kg) had synergistic effect with the subeffective dose of IVM (0.01 mg/kg) (P < 0.001), whereas bicuculline 1 mg/kg reversed the effect of IVM (0.05 mg/kg) (P < 0.001). IVM 0.05 mg/kg could also decrease the IL-1ß and TNFα levels and increase the expression of GABAA α1 subunit and GABAB R1 receptors in the flap tissue compared with the control group. CONCLUSIONS: IVM could improve skin flap survival, probably mediated by the GABAergic pathway. Both GABAA and GABAB receptors are involved in this process. This finding may repurpose the use of old drug, "Ivermectin."


Graft Survival/drug effects , Ivermectin/administration & dosage , Surgical Flaps/transplantation , gamma-Aminobutyric Acid/metabolism , Animals , Baclofen/administration & dosage , Bicuculline/administration & dosage , Drug Repositioning , GABA Antagonists/administration & dosage , GABA-A Receptor Antagonists/administration & dosage , Humans , Male , Models, Animal , Rats , Receptors, GABA-A/metabolism , Receptors, GABA-B/metabolism , Skin/drug effects , Skin/metabolism , Surgical Flaps/adverse effects
8.
Behav Brain Res ; 398: 112967, 2021 02 01.
Article En | MEDLINE | ID: mdl-33075397

The postpartum period is commonly accompanied by emotional changes, which for many new mothers includes a reduction in anxiety. Previous research in rodents has shown that the postpartum attenuation in anxiety is dependent on offspring contact and has further implicated enhanced GABAergic neurotransmission as an underlying mechanism. However, the specific brain regions where GABA acts to regulate the offspring-induced reduction in postpartum anxiety requires further investigation. Here, we test the hypothesis that offspring interactions suppress anxiety-like behavior in postpartum female rats via GABA signaling in the medial prefrontal cortex (mPFC). Our results show a postpartum reduction in anxiety-like behavior, an effect which was abolished by localized infusion of the GABAA receptor antagonist bicuculline in the mPFC. We also show that activation of GABAA receptors in the mPFC by the agonist muscimol was effective in restoring anxiolyisis in mothers separated from their pups. Lastly, we show that heightened anxiety-like behavior in pup-separated mothers was accompanied by a lower number and percentage of activated GABAergic neurons within the mPFC. Together, these results suggest that mother-offspring interactions reduce anxiety-like behavior in postpartum females via GABAA neurotransmission in the mPFC and in doing so provide insight into mechanisms that may become dysfunctional in mothers who experience high postpartum anxiety.


Anxiety/metabolism , GABA-A Receptor Agonists/pharmacology , GABA-A Receptor Antagonists/pharmacology , GABAergic Neurons/physiology , Maternal Deprivation , Prefrontal Cortex/physiology , Puerperal Disorders/metabolism , gamma-Aminobutyric Acid/physiology , Animals , Anxiety/drug therapy , Behavior, Animal/drug effects , Behavior, Animal/physiology , Bicuculline/pharmacology , Disease Models, Animal , Female , GABA-A Receptor Agonists/administration & dosage , GABA-A Receptor Antagonists/administration & dosage , Humans , Male , Muscimol/pharmacology , Prefrontal Cortex/metabolism , Puerperal Disorders/drug therapy , Rats, Sprague-Dawley
9.
Behav Brain Res ; 397: 112952, 2021 01 15.
Article En | MEDLINE | ID: mdl-33017640

Low concentrations of ovarian hormones, among other factors, are associated with greater vulnerability to negative effects of environmental stressors and may trigger anxiety symptoms in females. The flavonoid chrysin (5,7-dihydroxyflavone) exerts anxiolytic-like effects in male and ovariectomized female rats, but it is unknown if chrysin could reduce anxiety-like behavior that naturally occurs through the ovarian cycle phases. The present study evaluated the effect of chrysin on anxiety-like behavior associated with the ovarian cycle phases in rats and the participation of γ-aminobutyric acid-A (GABAA) receptors in these actions. The acute effects of chrysin (2 mg/kg) were investigated in female cycling Wistar rats in the elevated plus maze, locomotor activity test, and light/dark test. Diazepam (2 mg/kg) was used as reference anxiolytic drug. The participation of GABAA receptor in the anxiolytic actions of chrysin was explored by pretreating the rats with the noncompetitive GABAA chloride ion channel antagonist picrotoxin (1 mg/kg). Chrysin and diazepam prevented anxiety-like behavior that was associated with the metestrus-diestrus phase in both the elevated plus maze and light/dark test, and these effects were reversed by picrotoxin, with no significant changes in spontaneous locomotor activity. No significant motor effects of chrysin were detected in either behavioral test during proestrus-estrus or metestrus-diestrus phases, whereas diazepam produced motor hypoactivity in the locomotor activity test during proestrus-estrus phase. These results indicate that the flavonoid chrysin prevents anxiety-like behavior that naturally occurs during metestrus-diestrus in two unconditioned models that are used to evaluate anxiety-like behavior, and these effects were mediated by actions on GABAA receptors.


Anti-Anxiety Agents/pharmacology , Anxiety/drug therapy , Behavior, Animal/drug effects , Diazepam/pharmacology , Estrous Cycle/drug effects , Flavonoids/pharmacology , GABA-A Receptor Antagonists/pharmacology , Animals , Anti-Anxiety Agents/administration & dosage , Diazepam/administration & dosage , Diestrus/drug effects , Estrus/drug effects , Female , Flavonoids/administration & dosage , GABA-A Receptor Antagonists/administration & dosage , Metestrus/drug effects , Picrotoxin/pharmacology , Proestrus/drug effects , Rats , Rats, Wistar
10.
Cereb Cortex ; 30(12): 6469-6480, 2020 11 03.
Article En | MEDLINE | ID: mdl-32776091

OBJECTIVE: Whether the basal ganglia are involved in the cortical synchronization during focal seizures is still an open question. In the present study, we proposed to synchronize cortico-striatal activities acutely inducing striatal disinhibition, performing GABA-antagonist injections within the putamen in primates. METHOD: Experiments were performed on three fascicularis monkeys. During each experimental session, low volumes of bicuculline (0.5-4 µL) were injected at a slow rate of 1 µL/min. Spontaneous behavioral changes were classified according to Racine's scale modified for primates. These induced motor behaviors were correlated with electromyographic, electroencephalographic, and putaminal and pallidal local field potentials changes in activity. RESULTS: acute striatal desinhibition induced focal motor seizures. Seizures were closely linked to cortical epileptic activity synchronized with a striatal paroxysmal activity. These changes in striatal activity preceded the cortical epileptic activity and the induced myoclonia, and both cortical and subcortical activities were coherently synchronized during generalized seizures. INTERPRETATION: Our results strongly suggest the role of the sensorimotor striatum in the regulation and synchronization of cortical excitability. These dramatic changes in the activity of this "gating" pathway might influence seizure susceptibility by modulating the threshold for the initiation of focal motor seizures.


Cerebral Cortex/physiopathology , Cortical Synchronization , Putamen/physiopathology , Seizures/physiopathology , Animals , Bicuculline/administration & dosage , Female , GABA-A Receptor Antagonists/administration & dosage , Macaca fascicularis , Male , Neural Pathways/physiopathology , Putamen/drug effects , Rats, Sprague-Dawley , Seizures/etiology
11.
Mol Biol Rep ; 47(9): 6487-6496, 2020 Sep.
Article En | MEDLINE | ID: mdl-32778988

Echium amoenum (EA), a popular medicinal plant in Persian medicine, has anxiolytic, antioxidant, sedative, and anti-inflammatory effects. This study examined whether GABA-ergic signaling is involved in the anxiolytic effects of EA in mice. Sixty BALB/c mice (25-30 g) were divided into six groups (n = 10) as follows: the (I) control group received 10 ml/kg normal saline (NS). In the stress groups, the animals underwent 14 consecutive days of restraint stress (RS), and received following treatments simultaneously; (II) RS + NS; (III) RS + Diaz (Diazepam); (IV) RS + EA; (V) RS + Flu (Flumazenil) + EA; (VI) RS + Flu + Diaz. Behavioral tests including the open field test (OFT) and elevated plus maze (EPM) were performed to evaluate anxiety-like behaviors and the effects of the regimens. The plasma level of corticosterone and the hippocampal protein expressions of IL-1ß, TNF-α, CREB, and BDNF, as well as p-GABAA/GABAA ratio, were also assessed. The findings revealed that chronic administration of EA alone produced anxiolytic effects in both behavioral tests, while diazepam alone or in combination with Flu failed to decrease the anxiety-like behaviors. Furthermore, the p-GABAA/GABAA and p-CREB/CREB ratios, and protein levels of BDNF were significantly increased in the EA-received group. On the other hand, plasma corticosterone levels and the hippocampal IL-1ß and TNF-α levels were significantly decreased by EA. However, pre-treatment with GABAA receptors (GABAA Rs) antagonist, Flu, reversed the anxiolytic and molecular effects of EA in the RS-subjected animals. Our findings confirmed that alternation of GABAAR is involved in the effects of EA against RS-induced anxiety-like behaviors, HPA axis activation, and neuroinflammation.


Anti-Anxiety Agents/pharmacology , Behavior, Animal/drug effects , Echium/chemistry , GABA-A Receptor Antagonists/pharmacology , Plant Extracts/pharmacology , Receptors, GABA-A/metabolism , Animals , Anti-Anxiety Agents/administration & dosage , Anxiety/drug therapy , Behavior Rating Scale , Brain-Derived Neurotrophic Factor/metabolism , Corticosterone/blood , Cyclic AMP Response Element-Binding Protein/metabolism , Diazepam/administration & dosage , Diazepam/pharmacology , Flumazenil/administration & dosage , Flumazenil/pharmacology , GABA-A Receptor Antagonists/administration & dosage , Hippocampus/metabolism , Interleukin-1beta/metabolism , Male , Mice , Mice, Inbred BALB C , Plant Extracts/administration & dosage , Plants, Medicinal/chemistry , Plants, Medicinal/metabolism , Restraint, Physical , Stress, Physiological/drug effects , Tumor Necrosis Factor-alpha/metabolism , gamma-Aminobutyric Acid/metabolism
12.
Neuropharmacology ; 179: 108275, 2020 11 15.
Article En | MEDLINE | ID: mdl-32835765

The amygdala is a key component of the neural circuits mediating the processing and response to emotionally salient stimuli. Amygdala lesions dysregulate social interactions, responses to fearful stimuli, and autonomic functions. In rodents, the basolateral and central nuclei of the amygdala have divergent roles in behavioral control. However, few studies have selectively examined these nuclei in the primate brain. Moreover, the majority of non-human primate studies have employed lesions, which only allow for unidirectional manipulation of amygdala activity. Thus, the effects of amygdala disinhibition on behavior in the primate are unknown. To address this gap, we pharmacologically inhibited by muscimol or disinhibited by bicuculline methiodide the basolateral complex of the amygdala (BLA; lateral, basal, and accessory basal) in nine awake, behaving male rhesus macaques (Macaca mulatta). We examined the effects of amygdala manipulation on: (1) behavioral responses to taxidermy snakes and social stimuli, (2) food competition and social interaction in dyads, (3) autonomic arousal as measured by cardiovascular response, and (4) prepulse inhibition of the acoustic startle (PPI) response. All modalities were impacted by pharmacological inhibition and/or disinhibition. Amygdala inhibition decreased fear responses to snake stimuli, increased examination of social stimuli, reduced competitive reward-seeking in dominant animals, decreased heart rate, and increased PPI response. Amygdala disinhibition restored fearful response after habituation to snakes, reduced competitive reward-seeking behavior in dominant animals, and lowered heart rate. Thus, both hypoactivity and hyperactivity of the basolateral amygdala can lead to dysregulated behavior, suggesting that a narrow range of activity is necessary for normal functions.


Amygdala/drug effects , Emotions/drug effects , GABA-A Receptor Agonists/administration & dosage , GABA-A Receptor Antagonists/administration & dosage , Heart Rate/drug effects , Social Interaction/drug effects , Acoustic Stimulation/methods , Amygdala/diagnostic imaging , Amygdala/physiology , Animals , Emotions/physiology , Fear/drug effects , Fear/physiology , Fear/psychology , Heart Rate/physiology , Injections, Intraventricular , Macaca mulatta , Male , Prepulse Inhibition/drug effects , Prepulse Inhibition/physiology , Snakes
13.
Behav Brain Res ; 393: 112797, 2020 09 01.
Article En | MEDLINE | ID: mdl-32649976

Recently, we demonstrated the promising anxiolytic action of 7-chloro-4-(phenylselanyl) quinoline (4-PSQ) in mice. For this reason, the objective of this study was to expand our previous findings by investigating the contribution of serotoninergic and GABAergic systems to the anxiolytic action of this compound. Pretreatment with different serotoninergic antagonists (pindolol, WAY100635 and ketanserin) blocked the anxiolytic effect caused by 4-PSQ (50 mg/kg, per oral) in the elevated plus maze (EPM) test. The contribution of the GABAergic system was investigated by pretreatment with pentylenetetrazole (a GABAA receptor antagonist) (PTZ). 4-PSQ diminished the PTZ-induced anxiety, and did not modify the locomotor, exploratory and motor activities of mice. Later, this group of animals was euthanized and the blood was removed to determine the levels of corticosterone, and cerebral cortex and hippocampus to determine the mRNA expression levels of cAMP response element binding protein (CREB), brain derived neurotrophic factor (BDNF) and nuclear factor kappa B (NF-κB), as well as the Na+, K+ ATPase activity and reactive species (RS) levels. 4-PSQ was able to significantly reverse the increase in RS and corticosterone levels, as well as the decrease of CREB and BDNF expression in the cerebral structures and increase of NF-κB expression in the hippocampus. Finally, 4-PSQ restored the Na+, K+ ATPase activity in the cerebral structures evaluated. Here, we showed that the modulation of serotonergic and GABAergic systems, factors related to neurogenesis, oxidative status and Na+, K+ ATPase activity contributes to the anxiolytic effect of 4-PSQ and reinforces the therapeutical potential of this compound for the treatment of anxiety.


Anti-Anxiety Agents/administration & dosage , Anxiety/physiopathology , Quinolines/administration & dosage , Receptors, GABA-A/physiology , Selenium/administration & dosage , Serotonin/physiology , Animals , Anxiety/prevention & control , GABA-A Receptor Antagonists/administration & dosage , Male , Mice , Pindolol/administration & dosage , Quinolines/chemistry , Receptors, GABA-A/administration & dosage , Selenium/chemistry , Serotonin Antagonists/administration & dosage
14.
PLoS One ; 15(7): e0236363, 2020.
Article En | MEDLINE | ID: mdl-32706815

Auditory steady-state responses (ASSRs) are states in which the electrical activity of the brain reacts steadily to repeated auditory stimuli. They are known to be useful for testing the functional integrity of neural circuits in the cortex, as well as for their capacity to generate synchronous activity in both human and animal models. Furthermore, abnormal gamma oscillations on ASSR are typically observed in patients with schizophrenia (SZ). Changes in neural synchrony may reflect aberrations in cortical gamma-aminobutyric acid (GABA) neurotransmission. However, GABA's impact and effects related to ASSR are still unclear. Here, we examined the effect of a GABAa receptor antagonist, (+)-bicuculline, on ASSR in free-moving rats. (+)-Bicuculline (1, 2 and 4 mg/kg, sc) markedly and dose-dependently reduced ASSR signals, consistent with current hypotheses. In particular, (+)-bicuculline significantly reduced event-related spectral perturbations (ERSPs) at 2 and 4 mg/kg between 10 and 30 minutes post-dose. Further, bicuculline (2 and 4 mg/kg) significantly and dose-dependently increased baseline gamma power. Furthermore, the occurrence of convulsions was consistent with the drug's pharmacokinetics. For example, high doses of (+)-bicuculline such as those greater than 880 ng/g in the brain induced convulsion. Additionally, time-dependent changes in ERSP with (+)-bicuculline were observed in accordance with drug concentration. This study partially unraveled the contribution of GABAa receptor signals to the generation of ASSR.


Auditory Cortex/drug effects , Bicuculline/administration & dosage , Convulsants/administration & dosage , Evoked Potentials, Auditory/drug effects , GABA-A Receptor Antagonists/administration & dosage , Synaptic Transmission/drug effects , Animals , Bicuculline/pharmacokinetics , Convulsants/pharmacokinetics , GABA-A Receptor Antagonists/pharmacokinetics , Male , Rats , Rats, Sprague-Dawley , Receptors, GABA-A/metabolism , Schizophrenia/physiopathology
15.
Int J Neuropsychopharmacol ; 23(9): 626-637, 2020 12 03.
Article En | MEDLINE | ID: mdl-32710782

BACKGROUND: During adolescence, neuronal circuits exhibit plasticity in response to physiological changes and to adapt to environmental events. Nigrostriatal dopaminergic pathways are in constant flux during development. Evidence suggests a relationship between early use of cannabinoids and psychiatric disorders characterized by altered dopaminergic systems, such as schizophrenia and addiction. However, the impact of adolescent exposure to cannabinoids on nigrostriatal dopaminergic pathways in adulthood remains unclear. The aim of this research was to determine the effects of repeated activation of cannabinoid receptors during adolescence on dopaminergic activity of nigrostriatal pathways and the mechanisms underlying this impact during adulthood. METHODS: Male Sprague-Dawley rats were treated with 1.2 mg/kg WIN 55212-2 daily from postnatal day 40 to 65. Then no-net flux microdialysis of dopamine in the dorsolateral striatum, electrophysiological recording of dopaminergic neuronal activity, and microdialysis measures of gamma-aminobutyric acid (GABA) and glutamate in substantia nigra par compacta were carried out during adulthood (postnatal days 72-78). RESULTS: Repeated activation of cannabinoid receptors during adolescence increased the release of dopamine in dorsolateral striatum accompanied by increased population activity of dopamine neurons and decreased extracellular GABA levels in substantia nigra par compacta in adulthood. Furthermore, perfusion of bicuculline, a GABAa antagonist, into the ventral pallidum reversed the increased dopamine neuron population activity in substantia nigra par compacta induced by adolescent cannabinoid exposure. CONCLUSIONS: These results suggest that adolescent exposure to cannabinoid agonists produces disinhibition of nigrostriatal dopamine transmission during adulthood mediated by decreased GABAergic input from the ventral pallidum.


Basal Forebrain , Benzoxazines/pharmacology , Cannabinoid Receptor Agonists/pharmacology , Dopamine , Dopaminergic Neurons , GABA-A Receptor Antagonists/pharmacology , Morpholines/pharmacology , Naphthalenes/pharmacology , Neostriatum , Pars Compacta , Receptors, Cannabinoid/drug effects , gamma-Aminobutyric Acid , Age Factors , Animals , Basal Forebrain/drug effects , Basal Forebrain/metabolism , Benzoxazines/administration & dosage , Bicuculline/pharmacology , Cannabinoid Receptor Agonists/administration & dosage , Dopamine/metabolism , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/metabolism , GABA-A Receptor Antagonists/administration & dosage , Male , Morpholines/administration & dosage , Naphthalenes/administration & dosage , Neostriatum/drug effects , Neostriatum/metabolism , Pars Compacta/drug effects , Pars Compacta/metabolism , Rats, Sprague-Dawley , gamma-Aminobutyric Acid/drug effects , gamma-Aminobutyric Acid/metabolism
16.
J Pharmacokinet Pharmacodyn ; 47(5): 447-459, 2020 10.
Article En | MEDLINE | ID: mdl-32572738

Plasma drug concentration and electrocardiogram (ECG) data from a drug-drug interaction (DDI) study employing the metabolic inhibitor itraconazole have been used as part of a prospectively defined pharmacokinetic/pharmacodynamic modelling strategy to quantify the potential for QT interval prolongation from basmisanil, an investigational compound. ECG data were collected on multiple days during repeat dosing treatment regimens, thereby allowing the capture of QT data across a wide range of drug concentrations in each study participant and encompassing both "therapeutic" and "supra-therapeutic" exposures. The data were used to develop a non-linear mixed effect concentration-QT (C-QT) model that differentiated drug-induced QT prolongation from other factors altering QT interval duration. Food effects were accounted by quantitating their influences on the parameters describing the diurnal variation of QT. The final model demonstrated that itraconazole does not cause QT prolongation, while for basmisanil, the 1-sided upper 95% CI of the QT interval at 240 mg (the highest dose tested in ongoing phase 2 studies) with DDI, was below the 10 ms threshold considered to be of clinical significance by regulatory authorities. The empirical modelling was complemented with a human mechanistic cardiac single cell model that was used to simulate the change in action potential duration as a function of drug concentration. The results of the two approaches were in agreement, suggesting that the effect of basmisanil on QT interval duration can be attributed to the effect on hERG alone. The C-QT model for basmisanil can be used to derive the QT interval corrected changes in heart rate (QTc) and thus inform cardiac safety strategy in later development without the need for a separate, dedicated study.


Cytochrome P-450 CYP3A Inhibitors/pharmacokinetics , Cytochrome P-450 CYP3A/metabolism , GABA-A Receptor Antagonists/pharmacokinetics , Itraconazole/pharmacokinetics , Long QT Syndrome/diagnosis , Adult , Cross-Over Studies , Cytochrome P-450 CYP3A Inhibitors/administration & dosage , Drug Interactions , Electrocardiography/drug effects , Female , GABA-A Receptor Antagonists/administration & dosage , Healthy Volunteers , Heart Rate/drug effects , Humans , Itraconazole/administration & dosage , Long QT Syndrome/chemically induced , Male , Middle Aged , Models, Biological , Single-Cell Analysis , Young Adult
17.
Pharmacol Rep ; 72(1): 67-79, 2020 Feb.
Article En | MEDLINE | ID: mdl-32016845

BACKGROUND: Knowledge of the central areas involved in the control of sympathetic vasomotor activity has advanced in the last few decades. γ-Aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the mammal nervous system, and a microinjection of bicuculline, an antagonist of GABA type A (GABA-A) receptors, into the paraventricular nucleus of the hypothalamus (PVN) alters the pattern of sympathetic activity to the renal, splanchnic and lumbar territories. However, studies are needed to clarify the role of GABAergic inputs in other central areas involved in the sympathetic vasomotor activity. The present work studied the cardiovascular effects evoked by GABAergic antagonism in the PVN, RVLM and spinal cord. METHODS AND RESULTS: Bicuculline microinjections (400 pMol in 100 nL) into the PVN and rostral ventrolateral medulla (RVLM) as well as intrathecal administration (1.6 nmol in 2 µL) evoked an increase in blood pressure, heart rate, and renal and splanchnic sympathetic nerve activity (rSNA and sSNA, respectively), inducing a higher coherence between rSNA and sSNA patterns. However, some of these responses were more intense when the GABA-A antagonism was performed in the RVLM than when the GABA-A antagonism was performed in other regions. CONCLUSIONS: Administration of bicuculline into the RVLM, PVN and SC induced a similar pattern of renal and splanchnic sympathetic vasomotor burst discharge, characterized by a low-frequency (0.5 Hz) and high-amplitude pattern, despite different blood pressure responses. Thus, the differential control of sympathetic drive to different targets by each region is dependent, in part, on tonic GABAergic inputs.


Bicuculline/pharmacology , Brain/drug effects , GABA-A Receptor Antagonists/pharmacology , Spinal Cord/drug effects , Animals , Bicuculline/administration & dosage , Brain/metabolism , GABA-A Receptor Antagonists/administration & dosage , Male , Microinjections , Rats , Rats, Wistar , Spinal Cord/metabolism , Sympathetic Nervous System/drug effects , Vasomotor System/drug effects , gamma-Aminobutyric Acid/metabolism
18.
Pharmacol Rep ; 72(1): 260-266, 2020 Feb.
Article En | MEDLINE | ID: mdl-32016849

BACKGROUND: Many sedative-hypnotic agents are thought to act by positively modulating γ-aminobutyric acid type A (GABAA) receptors. However, for many agents, the location(s) of the binding site(s) responsible for such receptor modulation is uncertain. We previously developed a low efficacy ligand (naphthalene-etomidate) that binds within a homologous set of hydrophobic cavities located at GABAA receptor subunit interfaces in the transmembrane domain, and thus acts as a competitive antagonist for higher efficacy sedative-hypnotics that also bind to these sites. In this report, we describe studies using this compound as a pharmacological screening tool to test whether sedative-hypnotics representing a range of chemical classes can modulate GABAA receptors by binding within these receptor cavities. METHODS: The impact of naphthalene-etomidate on GABA-evoked currents that were mediated by oocyte-expressed α1ß3γ2L GABAA receptors and potentiated by muscimol, alphaxalone, 2,2,2-trichloroethanol, isoflurane, AA29504, loreclezole, or diazepam was quantified using electrophysiological techniques. RESULTS: Naphthalene-etomidate (300 µM) significantly reduced GABAA receptor currents potentiated by alphaxalone (by 22 ± 11%), 2,2,2-trichloroethanol (by 23 ± 6%), isoflurane (by 32 ± 10%), AA29504 (by 41 ± 6%), loreclezole (by 43 ± 9%), but significantly increased those potentiated by muscimol (by 26 ± 11%). Naphthalene-etomidate significantly increased currents potentiated by a low (1 µM) diazepam concentration (by 56 ± 14%) while reducing those potentiated by a high (100 µM) diazepam concentration (by 11 ± 7%). CONCLUSIONS: Our results suggest that many (but not all) sedative-hypnotics are capable of positively modulating the GABAA receptor by binding within a common set of hydrophobic cavities.


Etomidate/pharmacology , GABA-A Receptor Antagonists/pharmacology , Hypnotics and Sedatives/administration & dosage , Naphthalenes/pharmacology , Animals , Etomidate/administration & dosage , Female , GABA-A Receptor Antagonists/administration & dosage , Humans , Hydrophobic and Hydrophilic Interactions , Hypnotics and Sedatives/pharmacology , Ligands , Naphthalenes/administration & dosage , Receptors, GABA-A , Xenopus laevis , gamma-Aminobutyric Acid/metabolism
19.
Trials ; 21(1): 136, 2020 Feb 03.
Article En | MEDLINE | ID: mdl-32014032

BACKGROUND: The GABAA-α5 receptor antagonist S44819 is a promising candidate to enhance functional recovery after acute ischemic stroke (IS). S44819 is currently evaluated in this indication; RESTORE brain study started in Dec 2016 and was completed in March 2019. METHODS/DESIGN: The study is a 3-month international, randomized, double-blind, parallel group, placebo-controlled phase II multicentre study. Patients in 14 countries who suffered an IS leading to a moderate or severe deficit defined by NIHSS score ranging from 7 to 20 and are aged between 18 to 85 years are included between 3 and 8 days after the stroke onset. Approximately 580 patients are to be included. The primary objective of the study is to demonstrate the superiority of at least one of the two doses of S44819 (150 or 300 mg bid) compared to placebo on top of usual care on functional recovery measured with the modified Rankin scale at 3 months. Comparisons between two doses of S44819 and placebo are assessed with ordinal logistic regression evaluating the odds of shifting from one category to the next in the direction of a better outcome at day 90. Secondary objectives include the evaluation of S44819 effects on neurological examination using the National Institute of Health Stroke Scale total score, activities of daily living using the Barthel Index total score, and cognitive performance using the Montreal Cognitive Assessment scale total score and Trail Making Test times. Safety and tolerability of the two doses of S44819 will also be analyzed. DISCUSSION: The RESTORE BRAIN study might represent the first proof of concept study of an innovative therapeutic approach that is primarily based on enhancing functional recovery after IS. TRIAL REGISTRATION: Randomized Efficacy and Safety Trial with Oral S 44819 after Recent ischemic cerebral Event, an international, multi-centre, randomized, double-blind placebo-controlled phase II study. ClinicalTrials.gov, NCT02877615; Eudract 2016-001005-16. Registered 24 August 2016.


Benzodiazepines/administration & dosage , Brain Ischemia/drug therapy , GABA-A Receptor Antagonists/administration & dosage , Intracranial Hemorrhages/drug therapy , Oxazoles/administration & dosage , Stroke/drug therapy , Activities of Daily Living , Adolescent , Adult , Aged , Aged, 80 and over , Benzodiazepines/adverse effects , Double-Blind Method , Female , GABA-A Receptor Antagonists/adverse effects , Humans , Male , Mental Status and Dementia Tests , Middle Aged , Oxazoles/adverse effects , Recovery of Function/drug effects , Treatment Outcome , Young Adult
20.
JCI Insight ; 4(20)2019 10 17.
Article En | MEDLINE | ID: mdl-31619586

Intrathecal (IT) delivery and pharmacology of antisense oligonucleotides (ASOs) for the CNS have been successfully developed to treat spinal muscular atrophy. However, ASO pharmacokinetic (PK) and pharmacodynamic (PD) properties remain poorly understood in the IT compartment. We applied multimodal imaging techniques to elucidate the IT PK and PD of unlabeled, radioactively labeled, or fluorescently labeled ASOs targeting ubiquitously expressed or neuron-specific RNAs. Following lumbar IT bolus injection in rats, all ASOs spread rostrally along the neuraxis, adhered to meninges, and were partially cleared to peripheral lymph nodes and kidneys. Rapid association with the pia and arterial walls preceded passage of ASOs across the glia limitans, along arterial intramural basement membranes, and along white-matter axonal bundles. Several neuronal and glial cell types accumulated ASOs over time, with evidence of probable glial accumulation preceding neuronal uptake. IT doses of anti-GluR1 and anti-Gabra1 ASOs markedly reduced the mRNA and protein levels of their respective neurotransmitter receptor protein targets by 2 weeks and anti-Gabra1 ASOs also reduced binding of the GABAA receptor PET ligand 18F-flumazenil in the brain over 4 weeks. Our multimodal imaging approaches elucidate multiple transport routes underlying the CNS distribution, clearance, and efficacy of IT-dosed ASOs.


Brain/metabolism , GABA-A Receptor Antagonists/pharmacokinetics , Muscular Atrophy, Spinal/drug therapy , Oligonucleotides, Antisense/pharmacokinetics , Animals , Arteries/diagnostic imaging , Arteries/metabolism , Brain/blood supply , Brain/cytology , Brain/diagnostic imaging , Flumazenil/administration & dosage , Flumazenil/analogs & derivatives , GABA-A Receptor Antagonists/administration & dosage , Gene Knockdown Techniques , Humans , Injections, Spinal , Intravital Microscopy , Male , Molecular Targeted Therapy/methods , Neuroglia/metabolism , Neurons/metabolism , Oligonucleotides, Antisense/administration & dosage , Pia Mater/diagnostic imaging , Pia Mater/metabolism , RNA, Messenger/analysis , RNA, Messenger/genetics , Rats , Receptors, AMPA/analysis , Receptors, AMPA/antagonists & inhibitors , Receptors, AMPA/genetics , Receptors, GABA-A/analysis , Receptors, GABA-A/genetics , Single Photon Emission Computed Tomography Computed Tomography , Spatio-Temporal Analysis , Thionucleotides/administration & dosage , Thionucleotides/pharmacokinetics , Tissue Distribution
...